
DuckDB

Harnessing in-process analytics
for data science and beyond

Gábor Szárnyas
Developer Relations Advocate

Øredev 2023-11-09

About me

DuckDB Labs
• Startup with ≈18 people
• Based in Amsterdam

Gábor Szárnyas
• 2014–2023: PhD + postdoc
• Research: benchmarks, graph processing

https://szarnyasg.github.io/
https://duckdblabs.com/

Context

The fact that mainstream developer laptops
now ship with 16-core, 3nm CPUs is one of
those THE PREMISE CHANGED fundamentals
[...].
Time to reconsider some fundamentals
of where things run, how, and when.

DuckDB is an analytical database system
built for powerful end-user devices

An analytical SQL database

Built to be portable and fast

Developed since 2018

Written in C++11

Open-source under the MIT license

DuckDB's key properties

Fast

In-process

Open-source

Portable

Deployment
model

Database server
Client application

Client–server setup

import psycopg

con = psycopg.connect(
 host="3.218.70.181",
 user="your_user",
 password="your_password",
 dbname="your_db"
)
con.execute("SELECT ...")

Client protocol

Bottleneck

Connection setup
and authentication

Pay for,
configure,

operate

Database server
Client application

Client–server setup

import psycopg

con = psycopg.connect(
 host="3.218.70.181",
 user="admin",
 password="admin",
 dbname="your_db"
)
con.execute("SELECT ...")

Client protocol

Still a bottleneck

Run in a container, need to
configure, adjust ports, ...Impractical!

In-process setup

Client application

import duckdb

duckdb.sql("SELECT ...")
No configuration
No authentication
No client protocol

In-process setup

Client application

import duckdb

duckdb.sql("SELECT ...")

for persistence

con = duckdb.connect("my.db")
con.sql("SELECT ...")

my.db
Single-file format
containing all tables

No configuration
No authentication
No client protocol

Database systems

Transactional Analytical

Client–server

In-process

Portable

You can get started with DuckDB in <15 seconds on most popular platforms

This includes:

• Typing the commands
• Downloading the packages from the internet
• Launching DuckDB

Installing DuckDB

macOS: Python package Windows: R package

...and more

Pkg.add("DuckDB")

npm install duckdb

cargo add duckdb

org.duckdb:duckdb_jdbc

pip install duckdb

install.packages("duckdb")

DuckDB has zero external dependencies

Dependencies are vendored in the codebase

Pure C/C++ codebase

Portable anywhere with a C++11 compiler

Small binary packages

Why is installation so fast?

WebAssembly (Wasm)

Fast

CSV reader performance

CSV size Load time Database size

3.4 GB 3.2 s 1 GB

35 GB 27 s 10 GB

360 GB 4 min 54 s 104 GB
≈3.5x compression

Setup: M2Pro CPU, 32GB RAM, DuckDB v0.9.1

>1.2 GB/s for reading CSV,
parsing, and writing to DuckDB

Test data: LDBC social network data set

Demo

Internals

column-basedrow-based

Storage

time id content length time id content length

column-basedrow-based

Storage

time id content length time id content length

column-basedrow-based

Storage

time id content length time id content length

column-at-a-timetuple-at-a-time

column-basedrow-based

Execution

time id content length time id content length

time id content length time id content length

vectorized
time id content length

column-at-a-timetuple-at-a-time

column-basedrow-based

Execution

time id content length time id content length

time id content length time id content length

thread 1

thread 2

vectorized
time id content length

Vectorized execution

L1 cache

L1 cache

vectorized

thread 2
L1 cache

L1 cache
thread 1

time id content length

Vectorized execution

L1 cache

Vectorized execution

L1 cache

thread 2

thread 1
vectorized

time id content length

L1 cache
thread 2

L1 cache
thread 1

Vectorized execution

vectorized
time id content length

Modern compilers
auto-vectorize code

Vectors fit into
L1 cache (32–128kB)

Parallelization along
row groups

SIMD vectorization
(AVX-512: 8×64-bit ints)

Indexing: Zone maps

time id content length

Nov 7

Nov 7

Nov 8

Nov 8

Nov 8

Nov 9

Nov 11

Nov 11

For each column, DuckDB creates zone maps (a.k.a. min-max indexes)

min max
Nov 7 Nov 8

min max
Nov 8 Nov 12

74

109

67

63

95

113

14

8

min max
63 109

min max
8 95

DuckDB supports secondary indexes:
• implicit indexes – primary key, foreign key, unique
• explicit indexes – CREATE [UNIQUE] INDEX

Tradeoffs:
• speed-up for high selectivity lookups
• negative performance impact for updates

Rule of thumb:
Most of the time indexes are not needed

Indexing with the Adaptive Radix Tree (ART)

Larger-than-memory execution: Joins and aggregations

Larger-than-memory execution
• Graceful degradation
• Always try to finish

Example:
• TPC-H SF100
• Query 7

0

3.5

7

10.5

14

24 22 20 18 16 14 12 10 8 6 4 2

memory limit (GB)

time (s)

Feature-rich

Input and output formats

JSON

Parquet

CSV

.db

zero-copy access

Query language

PostgreSQL dialect:

• Subqueries
• Window functions
• Common table extensions
• Lateral joins
• Range joins
• AsOf joins
• Pivoting and unpivoting tables

"Friendly SQL" extensions

Common pattern:

SELECT *
FROM Comment;

Friendly variant:

FROM Comment;

DuckDB SQL: FROM-first syntax

Common pattern:

SELECT
 creationDate, id, locationIP, browserUsed, content,
 length, CreatorPersonId, LocationCountryId
FROM Comment;

Friendly variant:

SELECT * EXCLUDE (ParentCommentId, ParentPostId)
FROM Comment;

DuckDB SQL: EXCLUDE columns

Common pattern:

SELECT month(creationDay), count(*) AS numComments
FROM Comment;

--> syntax error

Friendly variant:

SELECT month(creationDay), count(*) AS numComments
FROM Comment
GROUP BY ALL;

DuckDB SQL: GROUP BY ALL

Extensions

Data sources and destinations

.db

PostgreSQL

SQLite

MySQL

s3://

http(s)://

gcs://

• Powerful extension mechanism:
new types and functions
data formats
operators
SQL syntax
memory allocator

• Many DuckDB features are
implemented as extensions

httpfs
JSON
Parquet

Extensions

https://github.com/duckdb/extension-template

SELECT avg(price)
FROM 'https://duckdb.org/data/prices.parquet'
WHERE ticker = 'MSFT';

┌────────────┐
│ avg(price) │
│ double │
├────────────┤
│ 2.0 │
└────────────┘

Parquet + httpfs extensions to query stock data

It's not a full download:
• HTTP range requests so seek to the required data
• Only touch the ticker and price columns

Spatial extension

SELECT
 st_point(pickup_latitude, pickup_longitude) as pickup_point,
 st_point(dropoff_latitude, dropoff_longitude) as dropoff_point,
 dropoff_datetime::TIMESTAMP - pickup_datetime::TIMESTAMP AS time,
 trip_distance,
 st_distance(
 st_transform(pickup_point, 'EPSG:4326', 'ESRI:102718'),
 st_transform(dropoff_point, 'EPSG:4326', 'ESRI:102718')) / 5280 AS aerial_distance,
 trip_distance - aerial_distance AS diff
FROM rides
WHERE diff > 0
ORDER BY diff DESC;

• Adds PostGIS-like functionality: geospatial types for points, polygons, etc.
• Adds functions for calculating distances

Example: aerial distance on the New York taxi data set

DuckDB

Harnessing in-process analytics
for data science and beyond

Gábor Szárnyas
Developer Relations Advocate

Øredev 2023-11-09

Modernizing a graph algorithm benchmark

1

42

3

5

1

31

3

3

55

7755

77

77

G

R1

R2

Context:
Graph benchmark from 2015 (legacy code!)
Goal: find connected components quickly

Validation rule:
The result encode equivalence classes (R1=R2)

Problem:
The validation became very slow for large graphs
(single-threaded Java code building hashmaps)

Modernizing a graph algorithm benchmark

1

31

3

3

55

7755

77

77

R1

R2

1

42

3

5
G

https://github.com/ldbc/ldbc_graphalytics/pull/217
https://github.com/ldbc/ldbc_graphalytics/pull/217

More benchmark framework use cases

• Output validation
• Loading operation streams
• Query parameter generation
• Reading input parameters
• Preprocessing raw data
• Partitioning update streams
• Analyzing results

None of this is a DB problem...

But they are bulky operations
on heavily structured data.

https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165
https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165

Saving costs:
• Replacing (parts of) data warehouse jobs
• Running computation locally

Building block in applications:
• Just to perform a simple step
• E.g., converting from Parquet to CSV

Education:
• Easy-to-install, open, standards-compliant system
• No configuration, no DBA

Use cases

Limitations

Concurrency control

• ACID compliance via multi-version concurrency control (MVCC)
• WAL (write-ahead log) for recovery
• Not a good fit for write-heavy transactional workloads

my.db

RW

my.db

R

DuckDB only supports single-node execution

DuckDB can scale up:
• r6id.32xlarge instances have 1TB RAM for <$10/h
• x1e.32xlarge instances have 4TB RAM for ≈$28/h

Store the data in S3, run short bursts of workloads

Larger than memory execution allows scaling for TBs

For tens of TBs, a distributed setup is beneficial

Distributed execution

Client application

The DuckDB landscape

DuckDB versions

.db

 v0.9 Current version

 v0.10 Early next year

 v1.0 Later next year

Stable file format

Stability and maturity
improvements

Performance
optimizations

v1.0

Organizations around DuckDB

Wrapping up...

Classic open-source project

Full-fledged CLI client

Works when you're offline

No vendor lock-in

EXPORT DATABASE 'my_db' (FORMAT CSV);
EXPORT DATABASE 'my_db' (FORMAT PARQUET);

DuckDB is old-school with state of the art internals

https://duckdb.org/duckdb-docs.pdf

Give DuckDB a spin!

Google Colab, shell.duckdb.org

https://shell.duckdb.org/

@duckdbdiscord.duckdb.org

Stay in touch

duckdb.org

